ХАРАКТЕРИСТИКА СТАЛИ 12х18н10Т

Сталь конструкционная криогенная

Применение

Детали, работающие до 600 °C. Сварные аппараты и сосуды, работающие в разбавленных растворах азотной, уксусной, фосфорной кислот, растворах щелочей и солей и другие детали, работающие под давлением при температуре от -196 до +600 °C, а при наличии агрессивных сред до +350 °C. Сталь аустенитного класса используется в следующих сферах:

- В топливной и энергетической отраслях, благодаря высокой стойкости стали к высоким температурам.
- Отличный коэффициента теплопроводности обуславливает незаменимость данной стали при производстве оборудования для теплообменников. Листовая продукция из 12x18н10т подходит для изделий для коллекторов.
- Прочность и стойкость к воздействию агрессивных сред определили изготовление из этой стали бесшовных труб, транспортирующих агрессивные среды азотную, фосфорную, уксусную кислоты, их соли.
- В химической и нефтехимической сфере из стали 12х18н10т производят ёмкостей, эксплуатирующиеся под большим давлением, элементы оборудования для производства жидкого кислорода.
- Антикоррозионные качества стали позволяют использовать её при изготовлении сварочного оборудования, конструкций, которые эксплуатируются в прямом контакте с окислительными веществами, растворителями.

Сталь 12х18н10Т расшифровка маркировки:

- «12» 0,12 % углерода.
- «X18» 18 % хрома.
- «H10» никель 10 %.
- «Т» титан. Отсутствие цифры означает его процент не более 1,0 %–1,5 %.

Химический состав

С (Углеро д)	Si (Кремн ий)	Мп (Марга нец)	Р (Фосфор)	S (Cepa)	Ст (Хром)	Мо (Молиб ден)	Ni (Никель)	V (Ванадий)	Ті (Титан)	Си (Медь)	W (Вольф рам)	Fe (Железо)
< 0,12	< 0,8	< 2	< 0,035	< 0,02	17-19	< 0,5	9-11	< 0,2	< 0,8	< 0,4	< 0,2	осталь ное

Достаточно большой процент хрома (17 % - 19 %) обуславливает ее способность к пассивации, и увеличивает её антикоррозийные качества.

Добавка никеля (9 % - 11 %) позволяет присвоить данной стали класс аустенитов. Благодаря этому сталь марки 12х18н10Т характеризуется отличным сочетанием технологических качеств нержавеющих сталей и отличных эксплуатационных свойств.

Воздействие углерода в сплаве (0,1%) обеспечивает аустенитную структуру стали (при температуре выше 900 °C.

Включение в сплав алюминия, титана, кремния обеспечивает стали данной марки свойства ферритных сталей. Легирующий элемент – титан, в составе сплава, имеет карбидообразующий эффект, что предотвращает образование межкристаллитной коррозии.

Кремний в этом сплаве, процент которого не превышает 0,8 %, способствует повышению его плотности, и служит для дегазации стали. Увеличивает плотность сплава и его показатель текучести. Однако, нужно учитывать, что этот элемент понижает степень пластичности, что вызывает трудности при прокатке холодным способом.

Введение в состав стали марганца дает возможность производить мелкозернистую сталь. Предел процента фосфора в данной стали не может быть более 0,035 %, так как фосфор снижает механические качества данной стали, что препятствует ее использованию в криогенной области.

Механические свойства стали

Температура испытаний, °C	Предел текучести, $\sigma_{0,2}$, МПа	Временное сопротивление разрыву, σ _в , МПа	Относительное удлинение при разрыве, δ_5 , %	Относительное сужение, ψ, %	Ударная вязкость, КСU, Дж/см²						
	Закалка при 1050-1100 °C, охлаждение на воздухе										
20	225 - 315	550 - 650	46 - 74	66 - 80	215 - 372						
500	135 - 205	390 - 440	30 - 42	60 - 70	196 - 353						
550	135 - 205	380 - 450	31 - 41	61 - 68	215 - 353						
600	120 - 205	340 - 410	28 - 38	51 - 74	196 - 358						
650	120 - 195	270 - 390	27 - 37	52 - 73	245 - 353						
700	120 - 195	265 - 360	20 - 38	40 - 70	255 - 353						

Ударная вязкость из стали, КСU, Дж/см²

Термообработка	T=+20 °C	T= -40 °C	T= -75 °C
Полоса 8x40 мм в состоянии покоя	286	303	319

Чувствительность стали к охрупчиванию при старении

Время, часы	Температура, °С	Ударная вязкость, КСU, Дж/см ²
Исходное состояние	-	274
5000	600	186 - 206
5000	650	176 - 196

Жаростойкость стали

Среда	Температура, °С	Группа стойкости или балл		
Воздух	650	2 - 3		
Воздух	750	4 - 5		

Свойства по стандарту ГОСТ 5582-75

Термообработка	Сечение, мм	Предел текучести, _{00,2} , МПа	Временное сопротивление разрыву, $\sigma_{\scriptscriptstyle B}$, МПа	Относительное удлинение при разрыве, δ ₅ , %	Относительное сужение, ψ, %	Твердость , НВ
Листы горячекатанные и холоднокатанные: закалка при 1050-1080 °C, вода или воздух	До 3,9	205	530	40	-	1
Листы горячекатанные и холоднокатанные: нагартованные	До 3,9	-	880 - 1080	10	-	-

Свойства по стандарту ГОСТ 5949-75

Термообработка	Сечение,	Предел текучести, $\sigma_{0,2}$, МПа	Временное сопротивление разрыву, $\sigma_{\text{в}}$, МПа	Относительное удлинение при разрыве, δ_5 , %	Относительное сужение, ψ, %	Твердость, НВ
Прутки. Закалка при 1020-1100 °C, воздух, масло или вода	60	196	510	40	55	1

Физические свойства

Температура, °С	Модуль упругости, Е 10 ⁻⁵ ,МПа	Коэффициент линейного расширения, α 10 ⁶ , 1/°C	Коэффициент теплопроводности, λ, Вт/м·°С	Удельная теплоемкость, С, Дж/кг.°С	Удельное электросопротивление, R 10 ⁹ , Ом∙м
20	1,98	-	15	-	725
100	1,94	16,6	16	462	792
200	1,89	17,0	18	496	861
300	1,81	17,2	19	517	920
400	1,74	17,5	21	538	976
500	1,66	17,9	23	550	1028
600	1,57	18,2	25	563	1075
700	1,47	18,6	27	575	1115
800	-	18,9	26	596	-
900	-	19,3	-	-	-

Аналоги стали

США	ASTM/ AISI	321	321H	S32100	S32109	1	•
Германия	DIN,WNr	1.4541	1.4878	X10CrNi Ti18-10	X12CrNi Ti18-9	X6CrNi Ti18-10	-
Япония	JIS	SUS32 1	1	1	-	1	-
Франция	AFNOR	Z10CN T18-10	Z10C NT18-	Z6CNT1 8-10	Z6CNT1 8-12	-	-

			11				
Англия	BS	321831	321S5 1	321859	LW18	LW24	X6C rNiT i18- 10
Евросоюз	EN	1.4541	1.4878	X10CrNi Ti18-10	X6CrNiT i18- 10KT	-	-
Италия	UNI	X6CrN iTi18- 11	X6Cr NiTi18 -11KG	X6CrNiT i18- 11KT	-	-	-
Испания	UNE	F.3523	X6Cr NiTi18 -10	-	-	-	-
Китай	GB	0Cr18 Ni10Ti	0Cr18 Ni11Ti	0Cr18Ni 9Ti	1Cr18Ni 11Ti	H0Cr20 Ni10Ti	-
Швеция	SS	2337	-	-	-	-	-
Болгария	BDS	0Ch18 N10T	Ch18N 12T	Ch18N9 T	X6CrNiT i18-10	-	-
Венгрия	MSZ	Н5Ті	KO36 Ti	KO37Ti	X6CrNiT i18-10	-	-
Польша	PN	0H18N 10T	1H18 N10T	1H18N1 2T	1H18N9 T	-	-
Румыния	STAS	10TiNi Cr180	12TiNi Cr180	-	-	-	-
Чехия	CSN	17246	17247	17248	-	-	-
Австрия	ONORM	X6CrN	X6Cr	-	-	-	-

		iTi18- 10KK W	NiTi18 -10S				
Австралия	AS	321	-	-	-	-	-
Юж.Корея	KS	STS32 1	STS32 1TKA	STSF321	-	1	-