ХАРАКТЕРИСТИКА СТАЛИ AISI 316L

Сталь конструкционная криогенная

AISI 316L – **нержавеющая сталь**, являющаяся своего рода усовершенствованной маркой стали 304, сплав которой содержит никель и молибден. Наличие этих элементов в нержавеющей стали значительно повышает ее антикоррозийные свойства, благодаря чему эксплуатация возможна даже в очень агрессивных средах.

Нержавеющая сталь 316L также отличается от стали 304 AISI повышенной прочностью, сопротивляемостью к ползучести, превосходными механическими свойствами.

Применение

Из-за антикоррозийных свойств и механической прочности, сталь применяется во многих промышленных отраслях. Также она соответствует гигиеническим требованиям, поэтому применяется:

- в изготовлении резервуаров и контейнеров для хранения химических веществ;
- в пищевой, фармацевтической и медицинской сфере;
- в нефтеперерабатывающей, горнодобывающей, бумажно-целлюлозной, машиностроительной отраслях;
- в строительстве и архитектуре;
- в изготовлении изделий и емкостей для работы в растворах большинства кислот (серная, щелочная, фосфорная, лимонная, молочная и пр.);
- в изготовлении посуды и столовой утвари.

Сталь 316L легко поддается обработке, поэтому из нее изготавливают такие металлические изделия как: трубы, листы, профили и пр.

Химический состав

Углерод(С)	Кремний(Si)	Марганец(Мп)	Никель(Ni)	Cepa(S)	Фосфор(Р)	Хром(Ст)	Молибден(Мо)	
≤0.03	≤ 0.75	≤ 2.0	10-14	≤0.03	≤ 0.045	16-18	2.00-3.00	

Благодаря низкому содержанию углерода в составе стали 316L, она оптимальна для возведения сварных конструкций. Молибден в составе защищает сталь от разрушения в морской воде и парах

уксусной кислоты. Сплав железа и хрома образует на поверхности стали защитный слой, устойчивый к механическим и химическим воздействиям.

Механические свойства

Предел прочности (временное сопротивление разрыву), мин., МПа	485
Предел текучести, 0,2%, МПа	170
Твердость по Бринеллю, НВ макс, тип.	165
Усталостная прочность, N/mm ² тип.	260
Органолептическая проба Эриксена, мм	10-11
Относительное удлинение, мин., %	40

Коррозионная стойкость

Марка стали	NaCl 3.5% (морская вода), T=20°C	C2H2O4 (щавелевая кислота), 2.5%, T=100°C	H2SO4 (серная кислота), 5%, T=35°C	ЦН NO3 (азотная кислота) , 30%, T=106°C		
304	0,1-1,0 мм/год	>1,0 мм/год	0,1-1,0 мм/год	<0,1 мм/год		

Физические свойства

Физические свойства	Условные обозначения	Единица измерения	Температура	Значение		
Плотность	d	-	4°C	8.0		
Температура плавления	°C	1440				
Удельная теплоемкость	С	J/kg.K	20°C	500		
Тепловое расширение	k	W/m.K	20°C	15		
Средний коэффициент теплового расширения	α	10 ⁻⁶ .K ⁻¹	20-100°C 20-300°C 20-500°C	16.0 17.0 18.0		

Электрическое удельное сопротивление	ρ	Ω mm 2 /m	20°C	0.75
Магнитная проницаемость	μ	в 0.80 kA/m	20°C	1.005
Модуль упругости	E	MPa x 10 ³	20°C	200

Сопротивление коррозии в кислотных средах

Температура, °С	20				80							
Концентрация,% к массе	10	20	40	60	80	100	10	20	40	60	80	100
Серная кислота	0	1	2	2	1	0	2	2	2	2	2	2
Фосфорная кислота	0	0	0	0	1	2	0	0	0	0	1	2
Азотная кислота	0	0	0	0	0	1	0	0	0	0	1	2
Муравьиная кислота	0	0	0	1	1	0	0	0	1	1	1	0

Обработка

Отжиг

Диапазон температуры отжига 1050° C $\pm 25^{\circ}$ C сопровождается последующим быстрым охлаждением на воздухе или в воде. После отжига необходимо травление и пассивирование.

Отпуск

200-400°С с последующим воздушным охлаждением.

Травление (очистка поверхности)

- Смесь Азотной кислоты и фтористоводородной/плавиковой кислоты (10 % HNO3 + 2% HF);
- при комнатной температуре или 60°C;
- Серно-азотная кислотная смесь (10 % H2SO4 + 0.5 % HNO3) при 60°С;
- Паста для очистки от окалины в зоне сварки.

Пассивация

• 20-25 % раствор HNO3 при 20°C;

• Пассивирующие пасты для зоны сварки.

Аналоги стали

Германия	-	X2CrNiMo18-14-3
Япония	JIS	SUS 316L
Евросоюз	EN	1.4404
Россия	ГОСТ	03X17H14M3